翻訳と辞書
Words near each other
・ Batchelder House
・ Batchelder House (Pasadena, California)
・ Batchelder House (Reading, Massachusetts)
・ Batchelder's Block
・ Batcheller
・ Batcheller's Cave
・ Batchellerville Presbyterian Church
・ Batchelor
・ Batchelor (surname)
・ Batchelor Airfield
・ Batchelor Hill
・ Batchelor Hills
・ Batchelor Institute of Indigenous Tertiary Education
・ Batchelor Roper
・ Batchelor scale
Batchelor vortex
・ Batchelor, Louisiana
・ Batchelor, Northern Territory
・ Batchelors
・ Batchenga
・ Batcher odd–even mergesort
・ Batcher Opera House Block
・ Batchewana First Nation of Ojibways
・ Batchi
・ Batchimeg Tuvshintugs
・ BatchMan
・ BatchMaster Software
・ Batchoy
・ BatchPipes
・ BatchSync


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Batchelor vortex : ウィキペディア英語版
Batchelor vortex
In fluid dynamics, Batchelor vortices, first described by George Batchelor in a 1964 article, have been found useful in analyses of airplane vortex wake hazard problems.
==The model==
The Batchelor vortex is an approximate solution to the Navier-Stokes equations obtained using a boundary layer approximation. The physical reasoning behind this approximation is the assumption that the axial gradient of the flow field of interest is of much smaller magnitude than the radial gradient.
The axial, radial and azimuthal velocity components of the vortex are denoted U,V and W respectively and can be represented in cylindrical coordinates (x,r, \theta) as follows:
:
\begin
U(r) &= U_\infty + \frac e^, \\
V(r) &= 0, \\
W(r) &= qW_0 \frac.
\end

The parameters in the above equations are
* U_\infty, the free-stream axial velocity,
* W_0, the velocity scale (used for nondimensionalization),
* R_0, the length scale (used for nondimensionalization),
* R = R(t) = \sqrt, a measure of the core size, with initial core size R_0 and \nu representing viscosity,
* q, the swirl strength, given as a ratio between the maximum tangential velocity and the core velocity.
Note that the radial component of the velocity is zero and that the axial and azimuthal components depend only on r.
We now write the system above in dimensionless form by scaling time by a factor R_0/W_0. Using the same symbols for the dimensionless variables, the Batchelor vortex can be expressed in terms of the dimensionless variables as
:
\left\lbrace \begin
U(r) &= a + \displaystyle e^}, \\
V(r) &= 0, \\
W(r) &= q \displaystyle},
\end\right.

where a = U_\infty/W_0 denotes the free stream axial velocity and Re is the Reynolds number.
If one lets a = 0 and considers an infinitely large swirl number then the Batchelor vortex simplifies to the Lamb–Oseen vortex for the azimuthal velocity:
:W_\Theta(r) = \frac \left ( 1-e^ \right )
where \Gamma is the circulation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Batchelor vortex」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.